

Archive material from

Edition 2

 of Distributed Systems:
Concepts and Design

© George Coulouris, Jean Dollimore & Tim Kindberg 1994

Permission to copy for all non-commercial purposes is hereby granted

Originally published at pp. 579-84 of Coulouris, Dolllimore and Kindberg, Distributed Systems, Edition 2, 1994.

UNIX emulation in Mach and Chorus

Section 6.6 of edition 3 outlines the requirement for emulating operating systems at the binary level
on top of distributed operating system kernels. Mach and Chorus are designed to emulate operating
systems, notably UNIX; UNIX emulation has also been implemented on the V kernel.

Strict binary compatibility requires that all binary files compiled to run on a conventional
implementation of a version of UNIX (for example, Linux, 4.3BSD or SVR4) should run correctly
and without modification on the emulation, for the same machine architecture. This implies that
the following list of requirements should be met:

Address space layout

: The emulation must provide the regions expected by the program. If
the code is non-relocatable, the machine instructions assume that regions such as the
program text and heap occupy certain expected address ranges. Address space regions such
as the stack must be grown as necessary.

System call processing

: Whenever a program executes a system call with a valid set of
arguments, the emulation must handle this correctly according to the defined call semantics;
it must handle the associated

TRAP

 instruction and obey the parameter-passing conventions
expected by the program.

Error semantics

: Whenever a program presents invalid arguments to a system call, the
emulation must reproduce correctly the error semantics defined for the system call. In
particular, if the user program provides an invalid memory address, the emulation should
simply return an error status, and not raise a hardware exception at user-level.

Failure semantics

: The emulation should not introduce new system call failure modes. An
example of a failure mode applicable to a conventional UNIX implementation is the inability
to complete a call due to lack of system resources such as table space (for example,

fork

 may
fail in this way).

Protection

: User data and the UNIX emulation system itself must not be compromised.

Signals

: Signals must be generated and user-level handlers called as appropriate when a
UNIX program causes an exception such as an address space violation.

Emulation software is required at every computer that can run UNIX processes. One of the aims
when emulating UNIX in a distributed system is to implement a single UNIX image across several
computers, so that, for example, UNIX processes have globally unique process identifiers, and
signals can be transmitted transparently between computers. It becomes difficult or impossible to
meet the requirement of reproducing UNIX failure semantics – in so far as they are defined – in
these circumstances. Effectively, many UNIX system calls would have to be implemented as
transactions, because of the independent failure modes of computers and networks. Moreover,
suitable protection mechanisms are required, strictly speaking, when user data are transferred
across a network.

UNIX EMULATION IN MACH AND CHORUS

2

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

The Mach emulation

A UNIX process is implemented using a Mach task with a single thread (Figure 1). 4.3BSD UNIX
services are provided by two software components: an

emulation library

 and a

4.3BSD server

. The
emulation library is linked as a distinct region into every task emulating a UNIX process. This
region is inherited from

/etc/init

 by all UNIX processes. There is one 4.3BSD server (that is, one
such task) for every computer running the emulation. This server both handles requests sent by
clients and acts as an external pager when clients fault on mapped UNIX files, as we shall discuss.

Applications do not invoke the code in the emulation library directly. Mach provides a call

task_set_emulation

, which assigns the address of a handler in the emulation library to a given
system call number; this is called for each UNIX system call when the emulation is initialized.
When a UNIX process executes a system call, the

TRAP

 instruction causes the Mach kernel to
transfer control back to the thread in the UNIX task, so that this same thread executes the
corresponding emulation library handler (Figure 1). The handler then either sends a message
requesting the required service to the 4.3BSD server task and awaits a reply or, in some cases,
performs the UNIX system service using data accessible to the emulation library itself.

Each UNIX process and its local 4.3BSD server share two regions, of size one page. One of
these is read-only for the process, and it contains information such as the process’s identifier, user
identifier and group identifier. If a process calls

getpid

, for example, then the emulation library may
read the process identifier directly from this page and return it without communicating with the
4.3BSD server. The other shared region can be written by the UNIX process; it contains signal-
related information and an array of data structures relating to the process’s open files.

When a UNIX process opens a file it is mapped into a region of its address space, with the
4.3BSD server acting as the external pager. The emulation assigns a region of 64 kilobytes for each
file; if the file is larger, then the region is used as a movable window onto the file. When the process
calls

read

 or

write

 on the file, the corresponding emulation library procedure copies the data
between the mapped region and the user’s buffer and updates the file pointer. The data copying
requires no explicit communication with the 4.3BSD server. However, the library may generate
page faults as it accesses the file region, which will result in the kernel communicating with the
4.3BSD server.

The emulation library has to synchronize with the 4.3BSD server before it accesses the file
data if it needs the file window to be moved, or if the open file is shared (for example, with a child
or parent process). In the latter case, the file’s read-write pointer must be consistently updated. A
token is used to obtain mutual exclusion over its use. The emulation library is responsible for
requesting the token from the 4.3BSD server and releasing it. (See the subsection on distributed
mutiual exclusion in Chapter 10 for a description of centralized token management.)

Figure 1 UNIX emulation under Mach.

Task implementing UNIX process UNIX server task

Kernel

Port

System call
redirection table

UNIX
emulation

library

1. UNIX system

call trap

2 . Control transfer to in-

task emulation routine

3. Message requestingUNIX operation

UNIX EMULATION IN MACH AND CHORUS

3

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

The Mach exception handling scheme facilitates the implementation of UNIX signals arising
from exceptional conditions. A thread belonging to a 4.3BSD server can arrange to be sent
messages pertaining to exceptions, and it can respond to these by adjusting the victim task’s state
so as to call a signal handler, before replying to the kernel. The exception handling scheme also
facilitates automatic stack growth and task debugging.

The 4.3BSD server requires internal concurrency in order to handle the calls made upon it
efficiently. Recall that UNIX processes undergo a context switch and execute within the kernel to
handle their system calls in a conventional implementation; there is thus a process in the kernel for
every system call. The 4.3BSD server uses many C threads to receive requests and process them.
Most of the threads are kept in a pool and assigned dynamically to requests from emulation library
calls. There are also a few dedicated threads: the

Device reply

thread requests device activity from
the kernel; the

Softclock

thread implements timeouts; the

Netinput

thread handles network device
interactions with the kernel; and the

Inode pager

 thread implements an external pager
corresponding to mapped UNIX files.

The Chorus emulation

In Chorus, any operating system emulation subsystem consists of two types of component: a

subsystem process manager

 and zero or more other server actors. A subsystem process manager is
a supervisor actor that operates at the ‘front-line’ of operating system emulation: it handles system
call traps to its subsystem. A process manager runs at each site where the subsystem is
implemented. In some cases, the process manager can service a system call itself. In other cases, it
communicates by message passing with other, specialized subsystem actors to service the system
call. Chorus/MiX, the UNIX SVR4 UNIX emulation subsystem, consists primarily of the
following actors:

Process manager

: This provides process creation and destruction and signal handling, and
communicates with the other, specialized subsystem actors as necessary to handle system
calls.

File

 (

Object

)

manager

: Performs file management and acts as the external pager for mapped
files.

Device managers

: Control particular devices such as the disk.

Streams manager

: Manages pipes, networking, System V IPC and pseudo-terminals.

Apart from the Process Manager, the managers are run at each computer only as necessary: for
example, a diskless node does not run the File Manager.

A supervisor or system actor can dynamically ‘connect’ a table of

TRAP

 handler routines to
be called by the kernel when an actor executes a corresponding

TRAP

 instruction. The table
contains the address of a routine for each emulated system call. When an actor implementing a
UNIX process executes a

TRAP

 instruction, the thread executing the call enters the kernel’s
protection domain. In other words, it becomes temporarily a supervisor thread. The kernel
automatically switches the thread context so that it executes the corresponding

TRAP

 handler
previously installed by the Chorus/MiX process manager (Figure 2). This thread may be able to
complete the system call itself using its own data – for example, it might achieve a file

read

 or

write

by copying data between pages in the cache and the user address space. More generally, this thread
will communicate by message passing with one of the other Chorus/MiX subsystem servers. For
example, it will communicate with the File Manager if there is no cached data to satisfy a

read

.
The File Manager will then communicate with the Disk Manager to fetch the data.

Since they are accessed by message passing, any of the other subsystem servers may provide
system-wide facilities – unlike the process managers, which only handle local

TRAP

s.
The process manager establishes, in each actor representing a local UNIX process, a

supervisor thread and a control port for it. This thread is used to handle operations upon the process
resulting from system calls made by other UNIX processes. For example, if a process is sent a
signal, a message is delivered to the process’s control port and handled by the corresponding

UNIX EMULATION IN MACH AND CHORUS

4

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

supervisor thread. This thread can then, as appropriate, terminate the UNIX process or modify its
state so that a signal handler is called within it.

Comparison

When a Mach task executes a UNIX system call

TRAP

 the kernel passes control to a handler in the
emulation library, whose code and data reside in the address space of the task. This has the
disadvantage compared to the Chorus scheme, of allowing buggy code within the task to interfere
with the data in the emulation library, and thus to give rise to non-standard failure modes. The
Chorus scheme preserves complete isolation of system data structures from UNIX processes.

In Mach, all UNIX facilities are provided by the single UNIX (4.3BSD) server, as opposed
to several servers in Chorus. The advantage of the Chorus design is its modularity. Since the
separate servers communicate by message passing, any server can be re-implemented
independently of the others, as long as the interfaces are adhered to. However, the consequence of
this is that the system state relevant to a single emulated UNIX process is distributed across several
servers – and perhaps several computers. The exact apportionment of state between subsystem
servers is a difficult design issue. Extra communication can be required to maintain this state
consistently if it is replicated, and functionality can be affected by a decision to split state without
replication between servers. Mach, on the other hand, need concern itself only with the process
state in the emulation library’s data and that of the single UNIX server.

Subsystem servers require access to devices. Chorus differs from Mach in its approach to
device access: in Mach, devices are normally managed by the kernel, and a message-based
interface is provided to privileged tasks such as UNIX servers. In Chorus, by contrast, actors may
dynamically introduce device drivers into the executing kernel, and take complete control over
devices:

• Actors may dynamically connect interrupt handler routines to device interrupts. Whenever
an interrupt occurs, the kernel calls the associated routine, which is part of the code of a
supervisor actor. This routine can either handle the interrupt itself, or, for example, it can
send a message to a pre-arranged port, so that a thread can handle it.

• System or supervisor actors can establish supervisor threads to control devices. These
threads can handle requests for the device sent as messages to them, and they have direct
access to device registers in handling the requests.

Actor ThreadKey: Communications

Process
manager

UNIX TRAP

Kernel

File
manager

Device
manager

Redirection to handler
in process manager

Port

Figure 2 The emulation of UNIX in Chorus.

Note: Only some subsystem servers shown.

Network

UNIX EMULATION IN MACH AND CHORUS

5

Archive material from Edition 2 of Distributed Systems – Concepts and Design © George Coulouris, Jean Dollimore & Tim Kindberg 1994

The Chorus approach to device management appears to offer a performance advantage over the
Mach scheme, and it is flexible with respect to how much device processing is performed at kernel
level and how much at user level. However, it is debatable whether a particular subsystem should
gain complete access over a device, since this would normally be to the exclusion of other
subsystems. If device accesses are multiplexed through the kernel, on the other hand, then in
principle several subsystems can coexist at a single site. An example of this is Mach’s use of a
programmable

packet filter

 installed in the kernel, which multiplexes incoming packets to different
subsystem servers according to data in their headers. For example, all incoming NFS packets could
be handled by a UNIX subsystem server, whereas Appletalk packets could be handled by a MacOS
emulation server. These packets can be identified by simple programs provided by the respective
servers.

Golub

et al

. [1990] and Armand

et al

. [1989] describe UNIX emulation on Mach and Chorus
respectively; Dean and Armand [1992] describe UNIX emulation on Mach and Chorus in more
detail, and give performance figures. Cheriton

et al

. [1990] describe UNIX emulation on the V
kernel.

References

[Armand

et al.

 1989] Armand, F., Gien, M., Herrman, F. and Rozier, M. (1989).
Distributing UNIX brings it back to its original virtues.

Proc.
Workshop on Experiences with Building Distributed and
Multiprocessor Systems

, pp. 153-174, October.

[Cheriton

et al.

 1990] Cheriton, D., Whitehead, G. and Sznyter, E. (1990). Binary
emulation of Unix using the V kernel,

Proc. USENIX Summer
Conference

, pp. 73-85.

[Dean and Armand 1992] Dean, R. and Armand, F. (1992). Data movement in kernelized
systems.

Proc. USENIX Workshop on Microkernels

.

[Golub

et al.

 1990] Golub, D., Dean, R., Forin, A. and Rashid, R. (1990). UNIX as an
application program.

Proc. USENIX Summer Conference

, pp. 87-
96.

